금융/AI/IT 기사
이번에는 데이터를 압축 (Data Compression) 하는 방법에 대해서 알아보겠습니다. 실제 데이터를 압축하는 것은 아니고 다차원의 데이터를 저차원의 데이터로 축소하는 방식입니다. 이것은 머신러닝을 수행할 때 메모리와 디스크 사용에 대한 비용을 줄일 수도 있지만 그보다 더 좋은 점은 머신이 학습하는 시간을 단축할 수 있다는 것입니다. 더 빠른 결과를 볼 수 있고 성능이 좋은 머신러닝 시스템을 만들 수 있게 […]
이번에는 기존의 다른 알고리즘에서 optimization objective를 했던것과 같이 K means 알고리즘에 대한 optimization에 대해서 알아보겠습니다. c(i)는 각각의 x(i)의 데이터가 갖게되는 cluster의 번호를 의미하며 이 값은 cluster의 k 만큼의 존재하는 수 중에서 하나가 됩니다. uk는 cluster의 centroid(중심점)가 되는 정보로 k 갯수 만큼 존재합니다. uc(i)는 x(i)의 데이터가 속하는 cluster에 대한 cluster 중심점을 의미하게 됩니다. 이렇게 구성된 정보를 바탕으로 J […]
지금까지 우리는 Supervised Learning에 대해서 배웠습니다. 그동안에 Linear regression, logistic regression, Neural Networks 그리고 Support Vector Machine 까지의 알고리즘들을 공부했었습니다. 이번에는 Unsupervised Learning에 대해서 알아보겠습니다. Unsupervised Learning은 결과가 주어지지 않는 입력되는 데이터들(Unlabled dataset)만을 분석하여 연관있는 것들을 찾고 그룹핑을 하는 머신 러닝의 방식입니다. 아래 그림은 Supervised Learning에서의 데이터와 Decision Boundary를 그래프로 나타낸 것입니다. 각각의 데이터는 x 인지 o 인지의 결과를 […]
SVM을 사용할때 선택해야 하는 내용이 두가지 있습니다. 하나는 prarmeter C를 선택해야 하고 또 하나는 kernel을 선택해야 합니다. 커널이 없는 경우는 linear kernel이라고 하며 이것은 f 함수(similarity function)을 사용하지 않고 x features 를 사용하는 것입니다. 주로 n 이 크고 m이 작은 즉 features는 많은데 dataset 사이즈가 적은 경우에 사용이 됩니다. 그리고 우리가 배운 Gaussian kernel을 사용하는 […]
Kernel 이번에는 non-linear 에 대해서 알아보겠습니다. 아래 그림과 같이 dataset이 있고 h 함수가 오른쪽 공식과 같습니다. x 에 대한 다항식을 f로 치환하면 아래쪽의 함수와 같이 나타낼 수 있었습니다. 여기서 f를 어떻게 하면 잘 선택을 할 수 있을지에 대해서 살펴보려고 합니다. 임의로 세개의 점을 아래 그래프와 같이 지정을 해보겠습니다. 이 점들을 l 이라고 표현하고 landmarks라고 읽습니다. 어떠한 […]
SVM의 강점인 Large Margin에 대해서 벡터를 이용해서 한번 원리를 이해해보도록 하겠습니다. 어떤 원리로 margin이 생기는지를 알면 더 효율적으로 알고리즘을 사용할 수 있을 것 같습니다. 아래 그림과 같이 두개의 벡터 u, v가 있습니다. 각각 2개의 값을 가지고 있고 이 두개의 벡터의 곱에 대해서 생각해보겠습니다. 각각의 벡터를 그래프 상에 표현을 하면 아래 왼쪽과 같이 됩니다. u 벡터는 […]
지금까지 우리는 Supervised learning algorithms 에 대해서 알아보았습니다. 여러가지 알고리즘이 있었고 성능상에도 알고리즘들간에 큰 차이가 없다는 것을 알았습니다. 이번에는 조금 다른 알고리즘에 대해서 알아보려고 합니다. 현재 널리 이용되고 있으면서 강력한 알고리즘으로 유명한 Support Vector Machine 혹은 Large Margin Classification 이라고 불리우는 알고리즘 입니다. 이 알고리즘은 logistic regression이나 neural network과 비교해서도 보다 복잡한 non-linear functions을 처리하는데 유용합니다. SVM을 설명하기 위해서 logistic […]
지금까지 머신러닝에 대한 중요한 내용들을 배웠습니다. 이번에는 조금 다른 방향으로 생각해보려고 합니다. 스팸 메일을 분류하는 시스템을 만든다고 생각해 보겠습니다. 이 시스템은 분류(classification)에 대한 내용임으로 Supervised Learning에 속하는 문제가 됩니다. 이메일의 features를 x라고 하고 스팸인지 아닌지 여부를 y라고 합시다. (스팸은 1, 정상은 0) 이중에서 100개의 단어를 선택하여 이메일과 대조를 해보면서 각 features가 이메일 내용에 포함이 되어 있으면 1과 그렇치 않으면 0으로 […]
바로 이전 내용에서 처음 슬라이드로 다시 돌아가서, 아래 그림과 같이 머신 러닝을 적용할 때 문제가 발생하면 조치를 할 수 있는 옵션들이 약 6가지 정도 있습니다. 그냥 감으로 이것저것 해보는 것은 시간이 오래걸리기 때문에 효율적으로 판단하는 방법을 이전 내용에서 배웠습니다. 이제 이것을 통해서 어떠한 조치를 취하는 것이 현재 내가 격고 있는 어려움에 효과적인지를 정리하면서 알아보겠습니다. 앞의 […]
이번에는 머신러닝을 적용하여 여러분이 원하시는 무언가를 진행하고자 할때 생각해보면 좋은 내용들을 알아보겠습니다. 여러분이 정규화된 linear regression을 예측하는 모델을 만들었다고 생각해보겠습니다. 그런데 실제 학습된 결과가 실제 결과 보다 생각보다 많이 차이가 나서 적용하기 어렵다고 느껴질 때가 있을 것입니다. 이때 무엇을 해야 할까요 일반적으로 사람들은 다음과 같은 내용들을 하려고 생각합니다. 1. 더 많은 데이터가 필요하다 – 2배, […]